Bibliometric Review and Technical Summary of PWR Small Modular Reactors

  1. Fernández-Arias, Pablo 1
  2. Vergara Rodríguez , Diego 1
  3. Antón-Sancho, Álvaro 1
  1. 1 Technology, Instruction and Design in Engineering and Education Research Group (TiDEE.rg), Catholic University of Ávila, 05005 Ávila, Spain
Revista:
Energies

ISSN: 1996-1073

Ano de publicación: 2023

Volume: 16

Número: 13

Páxinas: 5168

Tipo: Artigo

DOI: 10.3390/EN16135168 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Energies

Resumo

Given the real problem of climate change and the consequent need to reduce greenhouse gas emissions, nuclear energy can be considered a real technological option in the absence of a technology that can supply the population with sufficient electrical energy in a sustainable way. The research and development advances of new nuclear reactor designs are evident in the case of Small Modular Reactor (SMR) technology. Two goals are clear in such a technology: (i) reducing onsite construction costs and time; (ii) promoting economic efficiency through the mass production of nuclear reactors. In view of the interest generated by this technology, a technical summary of PWR-SMR design is included in this paper, utilizing the scientific method based on: (i) a bibliometric review of scientific publications related to SMRs; and (ii) a technical analysis of aspects of the different PWR-SMR designs. The results obtained in the present research show a growing interest on the part of the scientific community in research on PWR reactors integrated within SMR designs. Few countries are doing research in this area; however, those that are doing so have achieved greater technological advances in their designs, resulting in greater technological variety and a higher degree of maturity.

Referencias bibliográficas

  • Asif, M. (2022). The 4Ds of Energy Transition: Decarbonization, Decentralization, Decreasing Use and Digitalization, Wiley.
  • Santos-Iglesia, C., Fernández-Arias, P., Antón-Sancho, Á., and Vergara, D. (2022). Energy Consumption of the Urban Transport Fleet in UNESCO World Heritage Sites: A Case Study of Ávila (Spain). Sustainability, 14.
  • Mahmood, H., Asadov, A., Tanveer, M., Furqan, M., and Yu, Z. (2022). Impact of Oil Price, Economic Growth and Urbanization on CO2 Emissions in GCC Countries: Asymmetry Analysis. Sustainability, 14.
  • Mohamued, E.A., Ahmed, M., Pypłacz, P., Liczmańska-Kopcewicz, K., and Khan, M.A. (2021). Global Oil Price and Innovation for Sustainability: The Impact of R&D Spending, Oil Price and Oil Price Volatility on GHG Emissions. Energies, 14.
  • Litvinenko, V. (2020). The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas. Resources, 9.
  • Stulberg, (2015), Prob. Post Communism, 62, pp. 112, 10.1080/10758216.2015.1010914
  • Yeoman, (2022), J. Revenue Pricing Manag., 21, pp. 253, 10.1057/s41272-022-00378-7
  • Gabbar, A.H., Abdussami, M.R., and Adham, M.I. (2020). Techno-Economic Evaluation of Interconnected Nuclear-Renewable Micro Hybrid Energy Systems with Combined Heat and Power. Energies, 13.
  • Uri, (1995), Energy, 20, pp. 1, 10.1016/0360-5442(94)00053-6
  • Ahmadi, E., McLellan, B., Mohammadi-Ivatloo, B., and Tezuka, T. (2020). The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review. Sustainability, 12.
  • Arvidsson, (2021), Int. J. Life Cycle Assess., 26, pp. 2339, 10.1007/s11367-021-02004-x
  • Kessides, (2012), Energy Policy, 48, pp. 185, 10.1016/j.enpol.2012.05.008
  • Bani, (2022), J. Nucl. Eng., 3, pp. 152, 10.3390/jne3020009
  • International Atomic Energy Agency (2022, April 18). Power Reactor Information System (PRIS). Available online: https://www.iaea.org/PRIS/home.aspx.
  • Alessi, (2022), Int. Rev. Financ. Anal., 84, pp. 102319, 10.1016/j.irfa.2022.102319
  • Tryhuba, A., Hutsol, T., Kuboń, M., Tryhuba, I., Komarnitskyi, S., Tabor, S., Kwaśniewski, D., Mudryk, K., Faichuk, O., and Hohol, T. (2022). Taxonomy and Stakeholder Risk Management in Integrated Projects of the European Green Deal. Energies, 15.
  • Fernández-Arias, P., Vergara, D., and Orosa, J.A. (2020). A Global Review of PWR Nuclear Power Plants. Appl. Sci., 10.
  • Cooper, (2014), Energy Res. Soc. Sci., 3, pp. 161, 10.1016/j.erss.2014.07.014
  • Mignacca, (2020), Energy, 206, pp. 118137, 10.1016/j.energy.2020.118137
  • Poudel, (2020), IEEE Trans. Energy Convers., 35, pp. 977, 10.1109/TEC.2019.2956707
  • Ayo-Imoru, R.M., Ali, A.A., and Bokoro, P.N. (2022). Analysis of a Hybrid Nuclear Renewable Energy Resource in a Distributed Energy System for a Rural Area in Nigeria. Energies, 15.
  • Poudel, B., Lin, L., Phillips, T., Eggers, S., Agarwal, V., and McJunkin, T. (2022). Operational Resilience of Nuclear-Renewable Integrated-Energy Microgrids. Energies, 15.
  • Hong, S., and Brook, B.W. (2018). Economic Feasibility of Energy Supply by Small Modular Nuclear Reactors on Small Islands: Case Studies of Jeju, Tasmania and Tenerife. Energies, 11.
  • Testoni, (2021), Prog. Nucl. Energy, 138, pp. 103822, 10.1016/j.pnucene.2021.103822
  • Stewart, (2022), Renew. Sust. Energ. Rev., 155, pp. 111880, 10.1016/j.rser.2021.111880
  • Bergmann, (2012), Energy, 45, pp. 288, 10.1016/j.energy.2012.01.078
  • Lloyd, (2021), Prog. Nucl. Energy, 134, pp. 103672, 10.1016/j.pnucene.2021.103672
  • Ingersoll, D.T., and Carelli, M.D. (2021). Handbook of Small Modular Nuclear Reactors, Woodhead Publishing. [2nd ed.].
  • Lee, (2015), Energies, 8, pp. 11470, 10.3390/en81011470
  • Gabbar, H.A., Adham, M.I., and Abdussami, M.R. (2021). Optimal Planning of Integrated Nuclear-Renewable Energy System for Marine Ships Using Artificial Intelligence Algorithm. Energies, 14.
  • Värri, K., and Syri, S. (2019). The Possible Role of Modular Nuclear Reactors in District Heating: Case Helsinki Region. Energies, 12.
  • Teräsvirta, A., Syri, S., and Hiltunen, P. (2020). Small Nuclear Reactor—Nordic District Heating Case Study. Energies, 13.
  • Peakman, A., and Merk, B. (2019). The Role of Nuclear Power in Meeting Current and Future Industrial Process Heat Demands. Energies, 12.
  • Darwish, (2019), Desalination, 457, pp. 39, 10.1016/j.desal.2019.01.002
  • Sanchez-Espinoza, V.H., Gabriel, S., Suikkanen, H., Telkkä, J., Valtavirta, V., Bencik, M., Kliem, S., Queral, C., Farda, A., and Abéguilé, F. (2021). The H2020 McSAFER Project: Main Goals, Technical Work Program, and Status. Energies, 14.
  • Zhang, (2007), Nucl. Eng. Des., 237, pp. 2265, 10.1016/j.nucengdes.2007.04.001
  • Toribio, (2017), Eng. Fail. Anal., 82, pp. 458, 10.1016/j.engfailanal.2017.08.004
  • Pannier, (2014), Energy Power Eng., 6, pp. 82, 10.4236/epe.2014.65009
  • Ho, (2019), Energy Procedia, 160, pp. 459, 10.1016/j.egypro.2019.02.193
  • Liu, (2014), Prog. Nucl. Energy, 70, pp. 20, 10.1016/j.pnucene.2013.07.005
  • Chang, C.-k., and Oyando, H.C. (2022). Review of the Requirements for Load Following of Small Modular Reactors. Energies, 15.
  • Hidayatullah, (2015), Prog. Nucl. Energy, 79, pp. 127, 10.1016/j.pnucene.2014.11.010
  • Ingersoll, D.T., and Carelli, M.D. (2021). Handbook of Small Modular Nuclear Reactors, Woodhead Publishing. [2nd ed.].
  • Vegel, (2017), Energy Policy, 104, pp. 395, 10.1016/j.enpol.2017.01.043
  • Black, (2023), Nucl. Technol., 209, pp. S1, 10.1080/00295450.2022.2118626
  • Lovering, J.R., Baker, S.H., and Allen, T.R. (2021). Social License in the Deployment of Advanced Nuclear Technology. Energies, 14.
  • Zeliang, C., Mi, Y., Tokuhiro, A., Lu, L., and Rezvoi, A. (2020). Integral PWR-Type Small Modular Reactor Developmental Status, Design Characteristics and Passive Features: A Review. Energies, 13.
  • Wrigley, (2021), Prog. Nucl. Energy, 134, pp. 103664, 10.1016/j.pnucene.2021.103664
  • Hussein, (2020), Phys. Open, 5, pp. 100038, 10.1016/j.physo.2020.100038
  • (2018), J. Travel. Tour. Mark., 35, pp. 1201, 10.1080/10548408.2018.1487368
  • Aluculesei, A.-C., Nistoreanu, P., Avram, D., and Nistoreanu, B.G. (2021). Past and Future Trends in Medical Spas: A Co-Word Analysis. Sustainability, 13.
  • Mas-Tur, A., Guijarro, M., and Carrilero, A. (2019). The Influence of the Circular Economy: Exploring the Knowledge Base. Sustainability, 11.
  • Sefidvash, (1996), Nucl. Eng. Des., 167, pp. 203, 10.1016/S0029-5493(96)01276-9
  • Cavalcante, W.Q.d.F., Coelho, A., and Bairrada, C.M. (2021). Sustainability and Tourism Marketing: A Bibliometric Analysis of Publications between 1997 and 2020 Using VOSviewer Software. Sustainability, 13.
  • World Nuclear Association (2023, May 15). Small Nuclear Power Reactors. Available online: https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx#:~:text=Small%20modular%20reactors%20(SMRs)%20are,production%20and%20short%20construction%20times.
  • Carless, (2016), Energy, 114, pp. 84, 10.1016/j.energy.2016.07.111
  • Michaelson, (2021), Renew. Sust. Energy Rev., 152, pp. 111638, 10.1016/j.rser.2021.111638
  • Shahmirzaei, (2022), Int. J. Energy Res., 46, pp. 8838, 10.1002/er.7760
  • Reyes, (2012), Nucl. Technol., 178, pp. 153, 10.13182/NT12-A13556
  • Chung, (2012), Nuclear Engin. Des., 244, pp. 52, 10.1016/j.nucengdes.2011.12.013
  • Nian, (2018), Prog. Nuc. Energy, 105, pp. 83, 10.1016/j.pnucene.2017.12.009
  • Chen, (2023), Nucl. Sci. Tech., 34, pp. 40, 10.1007/s41365-023-01192-5
  • Norouzi, (2021), Nucl. Eng. Technol., 53, pp. 677, 10.1016/j.net.2020.07.007
  • Nasiri, (2022), Ann. Nucl. Energy, 169, pp. 108939, 10.1016/j.anucene.2021.108939
  • Buchholz, S., Ricotti, M., Martin, O., Thuy, N., Lombardo, C., Kornytskyi, A., Playez, N., Israel, S., and Kaliatka, A. (2020). Improved Safety Features of LW-SMR, Euratom.
  • IAEA (2023, April 03). Advances in Small Modular Reactor Technology Developments. Available online: https://aris.iaea.org/Publications/SMR-Book_2018.pdf.
  • Thomas, (2022), WireS Energy Environ., 11, pp. e429, 10.1002/wene.429
  • Markou, (2019), Nucl. Eng. Des., 342, pp. 176, 10.1016/j.nucengdes.2018.12.002
  • Bourdais, J., and Chung, D. (2022). ‘Eco-Nuclear’ Energy Transformation? Authoritarian Environmentalism and Regulatory Policy in China. J. Asian Afr. Stud.
  • Comley, (1985), Prog. Nucl. Energy, 16, pp. 41, 10.1016/0149-1970(85)90005-8
  • Dehghani, (2010), Judgm. Decis. Mak., 5, pp. 540, 10.1017/S1930297500001704
  • Sheikhmohammady, M., Hipel, K.W., Asilahijani, H., and Kilgour, D.M. (2009, January 11–14). Strategic analysis of the conflict over Iran’s nuclear program. Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA.