Walkability under Climate Pressure: Application to Three UNESCO World Heritage Cities in Central Spain

  1. VELÁZQUEZ SAORNIL, JAVIER 1
  2. Infante, Javier 1
  3. Gómez, Inmaculada 1
  4. Hernando, Ana 2
  5. Gülçin, Derya 6
  6. Herráez, Fernando 1
  7. Rincón, Víctor 7
  8. Castanho, Rui Alexandre 345
  1. 1 Faculty of Sciences and Arts, Department of Environment and Agroforestry, Catholic University of Ávila, 05005 Ávila, Spain
  2. 2 Silvanet Research Group, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
  3. 3 Faculty of Applied Sciences, WSB University, 41-300 Dąbrowa Górnicza, Poland
  4. 4 CITUR–Madeira–Centre for Tourism Research, Development and Innovation, 9000-082 Funchal-Madeira, Portugal
  5. 5 College of Business and Economics, University of Johannesburg, Auckland Park P.O. Box 524, South Africa
  6. 6 Faculty of Agriculture, Department of Landscape Architecture, Aydın Adnan Menderes University, Aydın 09100, Turkey
  7. 7 Faculty of Pharmacy, Department of Pharmacology, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
Zeitschrift:
Land

ISSN: 2073-445X

Datum der Publikation: 2023

Ausgabe: 12

Nummer: 5

Seiten: 944

Art: Artikel

DOI: 10.3390/LAND12050944 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Land

Ziele für nachhaltige Entwicklung

Zusammenfassung

first_pagesettingsOrder Article ReprintsOpen AccessArticleWalkability under Climate Pressure: Application to Three UNESCO World Heritage Cities in Central Spainby Javier Velázquez 1,*ORCID,Javier Infante 1,Inmaculada Gómez 1ORCID,Ana Hernando 2ORCID,Derya Gülçin 3ORCID,Fernando Herráez 1ORCID,Víctor Rincón 4ORCID andRui Alexandre Castanho 5,6,7ORCID1Faculty of Sciences and Arts, Department of Environment and Agroforestry, Catholic University of Ávila, 05005 Ávila, Spain2Silvanet Research Group, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain3Faculty of Agriculture, Department of Landscape Architecture, Aydın Adnan Menderes University, Aydın 09100, Turkey4Faculty of Pharmacy, Department of Pharmacology, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain5Faculty of Applied Sciences, WSB University, 41-300 Dąbrowa Górnicza, Poland6CITUR–Madeira–Centre for Tourism Research, Development and Innovation, 9000-082 Funchal-Madeira, Portugal7College of Business and Economics, University of Johannesburg, Auckland Park P.O. Box 524, South Africa*Author to whom correspondence should be addressed.Land 2023, 12(5), 944; https://doi.org/10.3390/land12050944Received: 25 March 2023 / Revised: 19 April 2023 / Accepted: 20 April 2023 / Published: 23 April 2023(This article belongs to the Special Issue Social, Ecological, and Landscape Resilience in the Face of Climate Change)Download Browse Figures Review Reports Versions NotesAbstractWalkability is a modern concept that has become important in recent years due to the doubtless effects it has on aspects such as health and wellbeing, sustainable development, climate change, and tourism. It is necessary, therefore, that urban development strategies aim to achieve walkable cities. The main objective of this study is to define a methodology to calculate the walkability index in tourist cities and to predict the effects of climate change on this index, which is applied to three World Heritage cities in central Spain: Salamanca, Ávila, and Segovia. The methodology is developed in three phases. Phase I focus on the calculation of walkability, considering the following factors: facilities and services, accessibility, sidewalk width, population density, green areas, and urban trees. In Phase II, walkability in 2020, climate-related variables were added to the previous result: temperatures, solar radiation, and shadows. Finally, the third phase, walkability under climate change pressure in 2030, 2050, and 2100, establish predictions for different climate scenarios. The results show excellent walkability indices (higher) in city centers and newly built neighborhoods and low values in the rest of the peripheral areas, industrial estates, and neighborhoods. Climate predictions showed a generalized decrease in walkability over time, even higher in the scenario with high greenhouse gas emissions. Likewise, the models can be an excellent tool for the tourist management of cities since they show the most walkable areas and, therefore, the most suitable for tourist routes.

Informationen zur Finanzierung

Geldgeber

  • FCT—Portuguese Science and Technology Foundation
    • UIDB/04470/2020

Bibliographische Referenzen

  • Southworth, (2005), J. Urban Plan. Dev., 131, pp. 246, 10.1061/(ASCE)0733-9488(2005)131:4(246)
  • Pivo, (2011), Real Estate Econ., 39, pp. 185, 10.1111/j.1540-6229.2010.00296.x
  • Dovey, (2020), Urban Stud., 57, pp. 93, 10.1177/0042098018819727
  • Talen, (2013), Int. J. Sustain. Land Use Urban Plan., 1, pp. 42
  • Forsyth, (2015), Urban Des. Int., 20, pp. 274, 10.1057/udi.2015.22
  • Ewing, (2009), J. Urban Des., 14, pp. 65, 10.1080/13574800802451155
  • Bhattacharyya, (2013), Procedia-Soc. Behav. Sci., 96, pp. 2737, 10.1016/j.sbspro.2013.08.307
  • Lee, (2014), J. Urban Des., 19, pp. 368, 10.1080/13574809.2014.890040
  • Frank, (2006), J. Am. Plan. Assoc., 72, pp. 75, 10.1080/01944360608976725
  • Calise, (2013), Prev. Chronic Dis., 10, pp. E102, 10.5888/pcd10.120119
  • Speck, (2015), Doc. D’anàlisi Geogràfica, 61, pp. 437
  • Gehl, J. (2011). Life between Buildings, Island Press.
  • Müller-Riemenschneider, F., Pereira, G., Villanueva, K., Christian, H., Knuiman, M., Giles-Corti, B., and Bull, F.C. (2013). Neighborhood Walkability and Cardiometabolic Risk Factors in Australian Adults: An Observational Study. BMC Public Health, 13.
  • White, (2013), Psychol. Sci., 24, pp. 920, 10.1177/0956797612464659
  • Jerrett, (2017), BMJ Open, 7, pp. e013542, 10.1136/bmjopen-2016-013542
  • Auchincloss, (2009), Arch. Intern. Med., 169, pp. 1698, 10.1001/archinternmed.2009.302
  • Steell, (2018), J. Public Health, 40, pp. 508, 10.1093/pubmed/fdx092
  • Lyall, (2017), Bmj, 357, pp. j1456
  • Moayedi, (2013), J. Teknol., 65, pp. 85
  • Woodcock, (2009), Lancet, 374, pp. 1930, 10.1016/S0140-6736(09)61714-1
  • Massey, D.B. (2005). For Space. Space, 1–232. Available online: https://us.sagepub.com/sites/default/files/upm-assets/18967_book_item_18967.pdf.
  • Sennett, R. (2018). Building and Dwelling: Ethics for the City, Farrar, Straus and Giroux.
  • Claris, S., and Scopelliti, D. (2016). Cities Alive: Towards a Walking World, ARUP.
  • Shamsuddin, (2012), Procedia-Soc. Behav. Sci., 50, pp. 167, 10.1016/j.sbspro.2012.08.025
  • de La Calle Vaquero, M., and Lanuza, A.R. (2012, January 15). Ciudades Patrimonio de La Humanidad y Turismo: Un Ámbito de Reflexión Compartido. Proceedings of the XV Encuentro de Latinoamericanistas Españoles, Madrid, Spain.
  • (2007), Cuad. Tur., 20, pp. 79
  • Owen, (2007), Am. J. Prev. Med., 33, pp. 387, 10.1016/j.amepre.2007.07.025
  • Sisson, (2008), J. Am. Coll. Health, 56, pp. 585, 10.3200/JACH.56.5.585-592
  • Rahman, (2015), Procedia-Soc. Behav. Sci., 170, pp. 624, 10.1016/j.sbspro.2015.01.064
  • Dovey, K., Pafka, E., and Ristic, M. (2017). Mapping Urbanities: Morphologies, Flows, Possibilities, Routledge.
  • Schwartz, P., and Randall, D. (2003). An Abrupt Climate Change Scenario and Its Implications for United States National Security.
  • Hall, (2019), J. Sustain. Tour., 27, pp. 223, 10.1080/09669582.2017.1404607
  • Ahanger, (2013), Int. J. Mod. Plant Anim. Sci., 1, pp. 105
  • Zhai, (2005), J. Clim., 18, pp. 1096, 10.1175/JCLI-3318.1
  • Neumann, B., Vafeidis, A.T., Zimmermann, J., and Nicholls, R.J. (2015). Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. PLoS ONE, 10.
  • Biglari, (2019), Land Use Policy, 87, pp. 104043, 10.1016/j.landusepol.2019.104043
  • Abtew, W., and Melesse, A. (2013). Evaporation and Evapotranspiration: Measurements and Estimations, Springer.
  • Peterson, (2013), Bull. Am. Meteorol. Soc., 94, pp. 821, 10.1175/BAMS-D-12-00066.1
  • Azmi, (2018), Asian J. Environ.-Behav. Stud., 3, pp. 167, 10.21834/aje-bs.v3i8.290
  • Fayos-Solà, E., and Cooper, C. (2019). The Future of Tourism: Innovation and Sustainability, Springer International Publishing.
  • (2015), Geogaceta, 58, pp. 83
  • Jacobs, J. (2016). The Death and Life of Great American Cities, Knopf Doubleday Publishing Group.
  • Kottek, (2006), Meteorol. Z., 15, pp. 259, 10.1127/0941-2948/2006/0130
  • Vinuesa, (2009), Polígonos Rev. Geogr., 19, pp. 145
  • (2016), Acta Jorn. Científicas Asoc. Meteorológica Española, 34, pp. 39
  • Labdaoui, (2021), Build. Environ., 193, pp. 107627, 10.1016/j.buildenv.2021.107627
  • Lopera, (2005), Ciudad. Y Territ. Estud. Territ., 37, pp. 417
  • Rattan, (2012), Arc. User. Winter, 2012, pp. 30
  • (2019), Rev. Arquit., 21, pp. 8
  • Rohe, (2009), J. Am. Plan. Assoc., 75, pp. 209, 10.1080/01944360902751077
  • Puig, A.S. (1999). Cerdá: The Five Bases of the General Theory of Urbanization, Gingko Press Inc.
  • Guzmán, A. (2015, January 16–20). La Red Vial Es Imprescindible Para El Desarrollo y Crecimiento de Un País. Proceedings of the A. Signorino (Precidencia), XVIII Congreso ibero Latinoamericano del Asfalto, Bariloche, Argentina.
  • Hansen, R., Rall, E., Chapman, E., Rolf, W., and Pauleit, S. (2017). Urban Green Infrastructure Planning: A Guide for Practitioners. Green Surge, Available online: https://www.researchgate.net/publication/319967102_Urban_Green_Infrastructure_Planning_A_Guide_for_Practitioners.
  • Abedo, M., Salheen, M., and Elshater, A. (2020). Humanizing Cities through Car-Free City Development and Transformation, IGI Global.
  • Affif, (2020), Arsitektura, 18, pp. 239, 10.20961/arst.v18i2.43421
  • Gis, A. (2023, January 01). Mapas de Temperatura Superficial Diaria Con Sentinel 3. Available online: http://www.gisandbeers.com/mapas-de-temperatura-superficial-diaria-con-sentinel-3/.
  • (2014), Rev. Mex. Cienc. For., 5, pp. 58
  • Buzai, G.D. (2014). Evaluación Multicriterio y Análisis Espacial de Los Servicios de Salud: Conceptos Centrales y Aplicaciones Realizadas a la Ciudad de Luján (Provincia de Buenos Aires, Argentina), Universidad Nacional de Luján, Departamento de Ciencias Sociales, Instituto de Investigaciones Geográficas.
  • Saaty, (1980), International, Translated to Russian, Portuguesses and Chinese, Revised Edition, Paperback (1996, 2000), Volume 9, pp. 19
  • Ho, (2018), Eur. J. Oper. Res., 267, pp. 399, 10.1016/j.ejor.2017.09.007
  • Federov, V.V., Kuz’min, V.B., and Vereskov, A.I. (1982). Approximate Reasoning in Decision Analysis, North-Holland Publishing Company.
  • Arellano Ramos, B., and Roca Cladera, J. (2018, January 5–7). Áreas Verdes e Isla de Calor Urbana. Proceedings of the Libro de Proceedings, CTV 2018: XII Congreso Internacional Ciudad y Territorio Virtual: “Ciudades y Territorios Inteligentes”, UNCuyo, Mendoza, Spain.
  • (2010), Rev. Acad. Colomb. Cienc, 34, pp. 173
  • Akbari, (2001), Sol. Energy, 70, pp. 295, 10.1016/S0038-092X(00)00089-X
  • Gluch, (2006), Remote Sens. Environ., 104, pp. 123, 10.1016/j.rse.2006.01.025
  • Ganem, C., Balter, J., and Coch Roura, H. (2009, January 2–4). Condiciones de Sostenibilidad de La Ciudad Compacta: Análisis de Superficies Expuestas a La Radiación y Sombras Arrojadas En La Ciudad de Mendoza. Proceedings of the 5th International Conference Virtual City and Territory, Barcelona, Spain.
  • Lezcano, (2020), SusBCity, 2, pp. 18
  • Berenson, M.L., Levine, D.M., and Krehbiel, T.C. (2006). Estadística para Administración, Pearson Educación. Available online: https://frrq.cvg.utn.edu.ar/pluginfile.php/16091/mod_resource/content/1/Estadistica%20para%20Administracion%20Parte%201.pdf.
  • (1997), Pap. Geogr., 25, pp. 17
  • Castro, M.d., Martín-Vide, J., and Alonso, S. (2005). El Clima de España: Pasado, Presente y Escenarios de Clima para El Siglo XXI. Evaluación Preliminar de Los Impactos en España por Efecto del Cambio Climático.
  • Felicísimo, A.M. (1999). Estimación de la Insolación Potencial a Partir del Modelo Digital de Elevaciones, Universidad de Extremadura.
  • Nafría García, D., Garrido del Pozo, N., Álvarez Arias, M.V., Cubero Jiménez, D., Fernández Sánchez, M., Villarino Barrera, I., and Abia Llera, I. (2013). Atlas Agroclimático de Castilla y León, ITACYL-AEMET.
  • (2004), PASOS. Rev. Tur. Y Patrim. Cult., 2, pp. 243
  • Vidal, R.P., Escolano, L., López, A., Solé, S., Campos, Á.P., Antón, Z., and Navarro, H. (2016). Herramientas Cartográficas y de Visualización para Los Observatorios Territoriales: La Valoración de la Proximidad de la Población a Las Zonas Verdes, Equipamientos y Servicios en la Ciudad de Zaragoza (España), Instituto Universitario de Investigación en Ciencias Ambientales de Aragón.
  • Blečić, I., Congiu, T., Fancello, G., and Trunfio, G.A. (2020). Planning and Design Support Tools for Walkability: A Guide for Urban Analysts. Sustainability, 12.
  • Hall, (2018), Transp. Res. Part D Transp. Environ., 61, pp. 310, 10.1016/j.trd.2017.12.018
  • De Gruyter, C., Currie, G., and Rose, G. (2017). Sustainability Measures of Urban Public Transport in Cities: A World Review and Focus on the Asia/Middle East Region. Sustainability, 9.
  • Kelly, (2007), J. Epidemiol. Community Health, 61, pp. 978, 10.1136/jech.2006.054775
  • Tiemann, (2012), Spaces Flows Int. J. Urban Extra Urban Stud., 2, pp. 41, 10.18848/2154-8676/CGP/v02i03/53650
  • Mohamed, A.A. (2019). Handbook of Research on Digital Research Methods and Architectural Tools in Urban Planning and Design, IGI Global.
  • (2023, January 01). United Nations Peace, Dignity and Equality on a Healthy Planet. Available online: https://www.un.org/en/sections/issues-depth/population/index.html.
  • Adams, (2009), J. Phys. Act. Health, 6, pp. S113, 10.1123/jpah.6.s1.s113
  • Dong, (2019), Landsc. Urban Plan., 185, pp. 246, 10.1016/j.landurbplan.2019.02.012
  • Roman, (2015), Urban For. Urban Green., 14, pp. 1174, 10.1016/j.ufug.2015.11.001
  • Roy, (2009), J. Appl. Meteorol. Climatol., 48, pp. 669, 10.1175/2008JAMC1983.1
  • Orlando, J.J., Tyndall, G.S., and Brasseur, G.P. (1999). Atmospheric Chemistry and Global Change, Oxford University Press.
  • Shepherd, (2014), Nat. Geosci., 7, pp. 703, 10.1038/ngeo2253
  • Challinor, (2017), Theor. Appl. Climatol., 129, pp. 503, 10.1007/s00704-016-1779-9
  • Glanz, T.A. (2011). Regional Planning Program: Student Projects and Theses, University of Nebraska Lincoln.
  • Sutikno, (2013), Procedia Environ. Sci., 17, pp. 424, 10.1016/j.proenv.2013.02.056
  • Al Shammas, T., and Escobar, F. (2019). Comfort and Time-Based Walkability Index Design: A GIS-Based Proposal. Int. J. Environ. Res. Public Health, 16.
  • Ricart, S., Olcina, J., and Rico, A.M. (2019). Evaluating Public Attitudes and Farmers’ Beliefs towards Climate Change Adaptation: Awareness, Perception, and Populism at European Level. Land, 8.
  • Nozzi, D. (2003). Road to Ruin: An Introduction to Sprawl and How to Cure It, Greenwood Publishing Group.
  • Burchell, (2000), Hous. Policy Debate, 11, pp. 821, 10.1080/10511482.2000.9521390