Consideración de la dinámica espacio-temporal para la definición de actuaciones defensivas contra la erosión

  1. Gómez Jiménez, Inmaculada
  2. Romero Calcerrada, Raúl
  3. Beneitez López, José Manuel
Revista:
Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

ISSN: 1578-5157

Año de publicación: 2007

Número: 7

Tipo: Artículo

Otras publicaciones en: Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

Resumen

El control de la erosión supone grandes costes ambientales y es un objetivo prioritario en la planificación territorial. En nuestro trabajo, la erosión se ha cuantificado mediante el modelo SWAT. En el trabajo se ha considerado la influencia de dinámica de cambio de uso sobre la erosión en el periodo 1984-1999. Además se ha anulado la dependencia entre la erosión y las variaciones meteorológicas interanuales para mejorar las comparaciones espacio-temporales utilizando dos escenarios (seco y húmedo). Los resultados han sido mapas de erosión para los años 1984, 1991 y 1999, más otros seis para los escenarios seco y húmedo. A partir de ellos se han generado nueve mapas de sostenibilidad frente a la erosión, los cuales permiten la localización de zonas prioritarias de actuación. Con estos mapas se establecieron comparaciones espacio-temporales, observándose una tendencia a la mejora frente a la erosión debido al cambio de usos del suelo. La metodología presentada permite localizar las áreas insostenibles frente a la erosión y priorizar actuaciones que permitan minimizar sus costes ambientales, empleando Tecnologías de Información Geográfica.

Referencias bibliográficas

  • Aguiló Alonso, M. (2000): Guía para la elaboración de estudios del medio físico: contenido y metodología. Madrid Secretaría General de Medio Ambiente. Ministerio de Medio Ambiente.
  • Angima, S. D., Stott, D. E., O'Neill, M. K., Ong, C. K. y Weesies, G. A. (2003): "Soil erosion prediction using RUSLE for central Kenyan highland conditions", Agriculture, Ecosystems & Environment, 97(1-3), pp. 295-308.
  • Arnold, J. G. y Allen, P. M. (1996): "Estimating hydrologic budgets for three Illinois watersheds", Journal of Hydrology, 176(1-4), pp. 57.
  • Arnold, J. G., Srinivasan, R., Ramanarayanan, T. S. y DiLuzio, M. (1999): "Water resources of the Texas Gulf Basin", Water Science and Technology, 39(3), pp. 121.
  • Bemporad, G. A., Alterach, J., Amighetti, F. F., Peviani, M. y Saccardo, I. (1997): "A distributed approach for sediment yield evaluation in Alpine regions", Journal of Hydrology, 197(1-4), pp. 370-392.
  • Boardman, J., Poesen, J. y Evans, R. (2003): "Socio-economic factors in soil erosion and conservation", Environmental Science & Policy, 6(1), pp. 1-6.
  • Boellstorff, D. y Benito, G. (2005): "Impacts of set-aside policy on the risk of soil erosion in central Spain", Agriculture, Ecosystems & Environment, 107(2-3), pp. 231-243.
  • Breuer, L., Eckhardt, K. y Frede, H.-G. (2003): "Plant parameter values for models in temperate climates", Ecological Modelling, 169(2-3), pp. 237-293.
  • Cox, C. y Madramootoo, C. (1998): "Application of geographic information systems in watershed management planning in St. Lucia", Computers and Electronics in Agriculture, 20(3), pp. 229-250.
  • da Silva, A. M. (2004): "Rainfall erosivity map for Brazil", CATENA, 57(3), pp. 251-259.
  • de la Rosa, D., Moreno, J. A., Mayol, F. y Bonson, T. (2000): "Assessment of soil erosion vulnerability in western Europe and potential impact on crop productivity due to loss of soil depth using the ImpelERO model", Agriculture, Ecosystems & Environment, 81(3), pp. 179.
  • DeRoo, A. P. J., Offermans, R. J. E. y Cremers, N. H. D. T. (1996): "LISEM: a single- event, physically based hydrological and soil erosion model for drainage basins. 2. Sensitivity analysis, validation and application", Hydrol. Process, 10(8), pp. 1119–1126.
  • Eckhardt, K., Haverkamp, S., Fohrer, N. y Frede, H. G. (2002): "SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments", Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), pp. 641.
  • FAO–UNESCO. (1989): Mapa mundial de suelos. Leyenda Revisada. Organización de las Naciones Unidas para la Agricultura y Alimentación. Roma. 202 pp.
  • Fohrer, N., Eckhardt, K., Haverkamp, S. y Frede, H.-G. (2001): "Applying the SWAT Model as a Decision Support Tool for Land Use Concepts in Peripheral Regions in Germany", en Stott, D. E., Mohtar, R. H., y Steinhardt, G. C. (Coor.): Sustaining the Global farm. Selected papers from the 10th International Soil Conservation Organization Meeting held May 24-29, 1999, West Lafayette, IN. West Lafayette, IN., International Soil Conservation Organization in cooperation with the USDA and Purdue University., pp. 994- 999.
  • Francos, A., Bidoglio, G., Galbiati, L., Bouraoui, F., Elorza, F. J., Rekolainen, S., Manni, K. y Granlund, K. (2001): "Hydrological and water quality modelling in a medium-sized coastal basin", Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(1), pp. 47-52.
  • Grizzetti, B., Bouraoui, F., Granlund, K., Rekolainen, S. y Bidoglio, G. (2003): "Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model", Ecological Modelling, 169(1), pp. 25-38.
  • Grunwald, S. y Frede, H. G. (1999): "Using the modified agricultural non-point source pollution model in German watersheds", CATENA, 37(3-4), pp. 319-328.
  • Huisman, J. A., Breuer, L. y Frede, H. G. (2004): "Sensitivity of simulated hydrological fluxes towards changes in soil properties in response to land use change", Physics and Chemistry of the Earth, Parts A/B/C, 29(11-12), pp. 749-758.
  • Kinnell, P. I. A. (1998): "Converting USLE soil erodibilities for use with the QREI30 index", Soil and Tillage Research, 45(3-4), pp. 349-357.
  • Kinnell, P. I. A. (2000): "AGNPS-UM: applying the USLE-M within the agricultural non point source pollution model", Environmental Modelling and Software, 15(3), pp. 331-341.
  • Kirkby, M. (2001): "From Plot to Continent: Reconciling Fine and Coarse Scale Erosion Models", en Stott, D. E., Mohtar, R. H., y Steinhardt, G. C. (Coor.): Sustaining the Global farm. Selected papers from the 10th International Soil Conservation Organization Meeting held May 24-29, 1999, West Lafayette, IN. West Lafayette, IN., International Soil Conservation Organization in cooperation with the USDA and Purdue University., pp. 860- 870.
  • Knisel, W. G. (1985): "CREAMS-a field scale model for chemicals, runoff and erosion from agricultural management systems", Agriculture, U. D. O., ed.
  • Krysanova, V., Muller-Wohlfeil, D.-I. y Becker, A. (1998): "Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds", Ecological Modelling, 106(2-3), pp. 261.
  • Lenzi, M. A. y Di Luzio, M. (1997): "Surface runoff, soil erosion and water quality modelling in the Alpone watershed using AGNPS integrated with a Geographic Information System", European Journal of Agronomy, 6(1-2), pp. 1-14.
  • Leonard, R. A., Knisel, W. G. y Still, D. A. (1987): "GLEAMS: Groundwater Loading Effects of Agricultural Management Systems", Trans., Amer. Soc. of Agric. Engrs., 30, pp. 1403-1418.
  • Lopez-Bermudez, F., Romero-Diaz, A., Martinez-Fernandez, J. y Martinez-Fernandez, J. (1998): Vegetation and soil erosion under a semi-arid Mediterranean climate: a case study from Murcia (Spain)", Geomorphology, 24(1), pp. 51-58.
  • Monturiol, F.; Guerra, A; et al., (1975): Cartografía edafológica y capacidad de uso del suelo de la subregión de Madrid. COPLACO. Ministerio de la Vivienda e Instituto de Edafología y Biología Vegetal del CSIC. Madrid.
  • Monturiol, F. y Alcalá del Olmo, L. (1990): Mapa de asociaciones de suelos de la Comunidad de Madrid. Escala 1:200.000. Comunidad de Madrid–CSIC. Memoria y mapa, Madrid. 71 pp.
  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., Styczen, M. E. y Folly, A. J. V. (1998): "The European soil erosion model (EUROSEM): documentation and user guide", Silsoe College, Cranfield University.
  • Nachtergaele, J., Poesen, J., Vandekerckhove, L., Oostwourd Wijdenes, D. y Roxo, M. (2001): "Testing the Ephemeral Gully Erosion Model (EGEM) in Mediterranean Environments", en Stott, D. E., Mohtar, R. H., y Steinhardt, G. C. (Coor.): Sustaining the Global farm. Selected papers from the 10th International Soil Conservation Organization Meeting held May 24-29, 1999, West Lafayette, IN. West Lafayette, IN., International Soil Conservation Organization in cooperation with the USDA and Purdue University., pp. 1024-1028.
  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R. y King, K. W. (2002): "Soil and Water Assessement Tool Theoretical Documentation. Version 2000", Grassland, soil and Water Research Laboratory. Agricultural Research Service Temple, Texas.
  • Pacini, C., Giesen, G., Wossink, A., Omodei-Zorini, L. y Huirne, R. (2004): "The EU's Agenda 2000 reform and the sustainability of organic farming in Tuscany: ecological- economic modelling at field and farm level", Agricultural Systems, 80(2), pp. 171-197.
  • Puigdefabregas, J. y Mendizabal, T. (1998): "Perspectives on desertification: western Mediterranean", Journal of Arid Environments, 39(2), pp. 209-224.
  • Renschler, C. S., Mannaerts, C. y Diekkruger, B. (1999): "Evaluating spatial and temporal variability in soil erosion risk--rainfall erosivity and soil loss ratios in Andalusia, Spain", CATENA, 34(3-4), pp. 209-225.
  • Romero-Calcerrada, R. (2000): La valoración socioeconómica en la planificación de espacios singulares: las Zonas de Especial Protección de Aves. Universidad de Alcalá. Tesis Doctoral Inédita.
  • Romero-Calcerrada, R. y Perry, G. L. W. (2004): "The role of land abandonment in landscape dynamics in the SPA 'Encinares del rio Alberche y Cofio, Central Spain, 1984- 1999", Landscape and Urban Planning, 66(4), pp. 217-232.
  • Romero-Díaz, A., Cammeraat, L. H., Vacca, A. y Kosmas, C. (1999): "Soil erosion at three experimental sites in the Mediterranean", Earth Surface Processes and Landforms, 24(13), pp. 1243-1256.
  • Schoorl, J. M., Veldkamp, A. y Bouma, J. (2002): "Modeling Water and Soil Redistribution in a Dynamic Landscape Context", Soil Sci Soc Am J, 66(5), pp. 1610-1619.
  • Tripathi, M. P., Panda, R. K. y Raghuwanshi, N. S. (2003): "Identification and Prioritisation of Critical Sub-watersheds for Soil Conservation Management using the SWAT Model", Biosystems Engineering, 85(3), pp. 365-379.
  • Van Noordwijk, M., Poulsen, J. G. y Ericksen, P. J. (2004): "Quantifying off-site effects of land use change: filters, flows and fallacies", Agriculture, Ecosystems & Environment(104), pp. 19-34.
  • Williams, J. R. (1985): "The physical components of the EPIC model" (Coor.): Soil Erosion and Conservation. Ankeny, IA, Soil Conservation Society of America, pp. 272– 284.
  • Wischmeier, W. H. y Smith, D. D. (1978): Predicting rainfall erosion losses: guide to conservation planning, Washington, DC, United States Departament of Agriculture, Agricultural Reserarch Service (USDA-ARS). United States Government Printing Office.
  • Yu, B., Rose, C. W., Cielsiolka, C. A. A., Coughlan, K. J. y Fentie, B. (1997): "Towards a framework for runoff and soil loss prediction using GUEST technology", Australian Journal of Soil Research, 35, pp. 1191-1212.