Predicción de la solubilidad de sulfamerazina y sulfametazina en algunas mezclas cosolventes utilizando modelos de solución no ideales

  1. Tinoco, Luz Elena 1
  2. Galindres, Diana M.
  3. Osorio, Jhonny
  4. E. Cárdenas, Rossember
  1. 1 Grupo de Fisicoquímica y Análisis Matemático, Facultad de Ciencias y Humanidades, Fundación Universidad de América, Avda Circunvalar No. 20-53, Bogotá D. C.
Zeitschrift:
Revista Colombiana de Ciencias Químico-Farmacéuticas

ISSN: 1909-6356 0034-7418

Datum der Publikation: 2021

Titel der Ausgabe: 50(1)

Ausgabe: 50

Nummer: 1

Seiten: 292-313

Art: Artikel

DOI: 10.15446/RCCIQUIFA.V50N1.95463 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Revista Colombiana de Ciencias Químico-Farmacéuticas

Zusammenfassung

Introdução: as solubilidades experimentais de sulfamerazina (SMR e sulfametazina(SMT) em algumas misturas de cossolventes (metanol + água), (etanol + água) e(1-propanol + água), foram revisadas na literatura em cinco temperaturas de 293,15a 313,15 K. Metodologia: os resultados foram analisados com o modelo van’t Hoff,Apelblat modificado, Buchowski-Ksiazaczak λh, van’t Hoff-Yaws e o modelo de função Weibull de dois parâmetros. Determinou-se que os modelos que melhordescrevem a solubilidade dessas sulfonamidas em misturas (álcool + água) são osmodelos van’t Hoff e Apelblat, obtendo índices de correlação superiores a 0,99 emtodos os casos. Resultados: os resultados obtidos com a equação de Apelblat modificadaapresentam um alto índice de correlação para a solubilidade de SMR e SMTem misturas de cosolventes, seguido pelo modelo de van’t Hoff-Yaws que apresentaum alto ajuste dos dados calculados em relação a teóricos. De acordo com o modelode função Weibull de dois parâmetros, a solubilidade de SMR e SMT em misturasde cosolventes apresenta desvios significativos dos ideais, o que é consistente com aliteratura. Os resultados são discutidos em termos das interações soluto-solvente queocorrem neste sistema.

Bibliographische Referenzen

  • R. Cohen-Adad, S. Lindenbaum, J.W. Lorimer, A.N. Paruta, R. Piekos, M. Salomon, Introduction to the series on solubility of solids in liquids: subseries on pharmaceuticals, in: 4-Aminobenzenesulfonamides, Elsevier, Rhode Island, 1989, pp. 1-523.
  • S. Mondal, S. Malakar, Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances, Tetrahedron, 76, 131662 (2020).
  • E.N. Krylov, M.S. Gruzdev, U.V. Chervonova, L.V. Virzum, D. Sarkar, Synthesis, reactivity, acidic and pharmaceutical properties of sulphonamides, in: Sulfonamides: An Overview, edited by D. Sarkar, Nova, Odisha, 2020.
  • D.R. Delgado, G.A. Rodríguez, F. Martínez, Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures, J. Mol. Liq., 177, 156- 161 (2013).
  • D.R. Delgado, O. Bahamón-Hernandez, N.E. Cerquera, C.P. Ortiz, F. Martínez, E. Rahimpour, A. Jouyban, W.E. Acree, Jr., Solubility of sulfadiazine in (acetonitrile + methanol) mixtures: Determination, correlation, dissolution thermodynamics and preferential solvation, J. Mol. Liq., 322, 114979 (2021).
  • D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree, Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures, J. Chem. Thermodyn., 97, 264-276 (2016).
  • D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol + water mixtures, J. Solut. Chem., 44, 360-377 (2015).
  • D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2014).
  • D.R. Delgado, D.I. Caviedes-Rubio, C.P. Ortiz, Y.L. Parra-Pava, M.Á. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree, Jr., Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Phys. Chem. Liq., 58, 381-396 (2020).
  • A.M. Cruz-González, M.S. Vargas-Santana, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, F. Martínez, A. Jouyban, W.E. Acree, Jr., Solubility of sulfadiazine in (ethylene glycol + water) mixtures: Measurement, correlation, thermodynamics and preferential solvation, J. Mol. Liq., 323, 115058 (2021).
  • K. Kodide, P. Asadi, J. Thati, Solubility and thermodynamic modeling of sulfanilamide in 12 mono solvents and 4 binary solvent mixtures from 278.15 to 318.15 K, J. Chem. Eng. Data, 64, 5196-5209 (2019).
  • F. Martínez, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents, J. Solut. Chem., 30, 909-923, (2001).
  • F. Martínez, C.M. Ávila, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in cyclohexane, J. Braz. Chem. Soc., 14, 803-808 (2003).
  • A. Romdhani, F. Martínez, O.A. Almanza, M.A. Peña, A. Jouyban, W.E. Acree, Solubility of sulfacetamide in (ethanol + water) mixtures: Measurement, correlation, thermodynamics, preferential solvation and volumetric contribution at saturation, J. Mol. Liq., 290, 111219 (2019).
  • J.H. Blanco-Márquez, Y.A. Quigua-Medina, J.D. García-Murillo, J.K. Castro- Camacho, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides, Rev. Colomb. Cienc. Quím. Farm., 49, 234-255 (2020).
  • J.H. Blanco-Márquez, D.I. Caviedes Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures, Fluid Phase Equilib., 505, 112361 (2020).
  • J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures, J. Mol. Liq., 293, 111507 (2019).
  • R.E. Cárdenas, L.E. Tinoco, D.M. Galindres, A. Beltrán, C.D. Oviedo, J. Osorio, Prediction of sulfadiazine solubility in some cosolvent mixtures using non-ideal solution models, Rev. Colomb. Cienc. Quím. Farm., 49, 822-842 (2020).
  • A. Aydi, I. Dali, K. Ghachem, A.Z. Al-Khazaal, D.R. Delgado, L. Kolsi, Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation, Alex. Eng. J., 60, 905-914 (2021).
  • M.d.M. Muñoz, D.R. Delgado, M.Á. Peña, A. Jouyban, F. Martínez, Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K, J. Mol. Liq., 204, 132-136 (2015).
  • Z.J. Cárdenas, D.M. Jiménez, G.A. Rodríguez, D.R. Delgado, F. Martínez, M. Khoubnasabjafari, A. Jouyban, Solubility of methocarbamol in some cosolvent + water mixtures at 298.15 K and correlation with the Jouyban-Acree model, J. Mol. Liq., 188, 162-166 (2013).
  • D.M. Cristancho, D.R. Delgado, F. Martínez, Meloxicam solubility in ethanol + water mixtures according to the extended Hildebrand solubility approach, J. Solut. Chem., 42, 1706-1716 (2013).
  • D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M. Peña, O.A. Almanza, F. Martínez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures, J. Mol. Liq., 271, 522–529 (2018).
  • D.J.W. Grant, M. Mehdizadeh, A.H.L. Chow, J.E. Fairbrother, Non-linear van’t Hoff solubility-temperature plots and their pharmaceutical interpretation, Int. J. Pharm., 18, 25-38 (1984).
  • A.R. Holguín, D.R. Delgado, F. Martínez, Indomethacin solubility in propylene glycol + water mixtures according to the Extended Hildebrand Solubility Approach, Lat. Am. J. Pharm., 31, 720-726 (2012).
  • D.R. Delgado, M.Á. Peña, F. Martínez, Preferential solvation of some sulfonamides in 1,4-dioxane + water co-solvent mixtures at 298.15 K according to the inverse Kirkwood-Buff integrals method, Rev. Acad. Colomb. Cienc. Exact. Fis. Nat., 38, 104-114 (2014).
  • B.J. Boyd, C.A.S. Bergström, Z. Vinarov, M. Kuentz, J. Brouwers, P. Augustijns, M. Brandl, A. Bernkop-Schnürch, N. Shrestha, V. Préat, A. Müllertz, A. Bauer- Brandl, V. Jannin, Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems, Eur. J. Pharm. Sci., 137, 104967 (2019).
  • S. Kalepu, V. Nekkanti, Insoluble drug delivery strategies: Review of recent advances and business prospects, Acta Pharm. Sin. B, 5, 442-453 (2015).
  • Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: A review, J. Hazard. Mater., 262, 189-211 (2013).
  • S.V. Blokhina, M.V. Ol’khovich, A.V. Sharapova, I.B. Levshin, G.L. Perlovich, Thermodynamic insights to solubility and lipophilicity of new bioactive hybrids triazole with thiazolopyrimidines, J. Mol. Liq., 114662 (2020), doi: 10.1016/j. molliq.2020.114662.
  • A. Noubigh, M. Habib-Oueslati, Measurement and modeling of the solubility of vanillin constituent of olive mill wastewater in binary water + ethanol solvents mixtures between 278.15 K and 308.15 K, Aust. J. Basic Appl. Sci., 8, 396-403 (2014).
  • R. Heryanto, M. Hasan, E. Chan-Abdullah, A. Cahyo-Kumoro, Solubility of stearic acid in various organic solvents and its prediction using non-ideal solution models, ScienceAsia, 33, 469-472 (2007).
  • Q. Jia, D. Lei, S. Zhang, J. Zhang, N. Liu, K. Kou, Solubility measurement and correlation for HNIW•TNT co-crystal in nine pure solvents from T = (283.15 to 318.15) K, J. Mol. Liq., 114592 (2020), doi: 10.1016/j.molliq.2020.114592.
  • D. Yang, L. Fu, D. Shi, J. Li, Q. Zhang, Solubility of 3,7,9,11-tetraoxo-2,4,6,8,10- pentaaza[3.3.3] propellane (TOPAP) in different pure solvents at temperatures between 273.15 and 318.15 K, J. Chem. Eng. Data, 61, 3277-3285 (2016).
  • M.A.M. Khan, L. Ahrné, J.C. Oliveira, F.A.R. Oliveira, Prediction of water and soluble solids concentration during osmotic dehydration of mango, Food Bioprod. Process., 86, 7-13 (2008).
  • M. Svärd, Å.C. Rasmuson, (Solid + liquid) solubility of organic compounds in organic solvents - Correlation and extrapolation, J. Chem. Thermodyn., 76, 124- 133 (2014).
  • A.M. Romero-Nieto, D.I. Caviedes-Rubio, J. Polania-Orozco, N.E. Cerquera, D.R. Delgado, Temperature and cosolvent composition effects in the solubility of methylparaben in acetonitrile + water mixtures, Phys. Chem. Liq., 58, 722- 735 (2020).
  • A.M. Romero Nieto, N.E. Cerquera, D.R. Delgado, Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution, Rev. Colomb. Cienc. Quím. Farm., 48, 332-347 (2019).
  • A. Ksia¸zˆczak, J.J. Kosinski, Vapour pressure of binary, three-phase (S-L-V) systems and solubility, Fluid Phase Equilib., 44, 211-236 (1988).
  • A. Ksia¸zˆczak, K. Moorthi, I. Nagata, Solid-solid transition and solubility of even n-alkanes, Fluid Phase Equilib., 95, 15-29 (1994).
  • D.R. Delgado, F. Martínez, Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures, Fluid Phase Equilib., 360, 88-96 (2013).
  • D.R. Delgado, F. Martínez, Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures, J. Solut. Chem., 43, 836-852 (2014).