Rhizobium Presence and Functions in Microbiomes of Non-leguminous Plants

  1. Díez-Méndez, Alexandra
  2. Menéndez, Esther
Libro:
Soil Biology

ISSN: 1613-3382 2196-4831

ISBN: 9783030519155 9783030519162

Año de publicación: 2020

Páginas: 241-266

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-51916-2_16 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398
  • Arivaradarajan P, Misra G (2019) Omics approaches, technologies and applications, Omics approaches, technologies and applications: integrative approaches for understanding OMICS data. Springer, New York. https://doi.org/10.1007/978-981-13-2925-8
  • Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindstrom K (2017) Draft genome sequence of type strain HBR26T and description of Rhizobium aethiopicum sp. nov. Stand Genomic Sci 12:14
  • Bahulikar RA, Torres-Jerez I, Worley E, Craven K, Udvardi MK (2014) Diversity of nitrogen-fixing bacteria associated with switchgrass in the native tallgrass prairie of northern Oklahoma. Appl Environ Microbiol 80(18):5636–5643
  • Banerjee S, Schlaeppi K, van der Heijden MG (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16(9):567–576
  • Barauna AC, Rouws LF, Simoes-Araujo JL, Dos Reis Junior FB, Iannetta PP, Maluk M, Goi SR, Reis VM, James EK, Zilli JE (2016) Rhizobium altiplani sp. nov., isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in Central Brazil. Int J Syst Evol Microbiol 66:4118–4124
  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 1:729–770. https://doi.org/10.1016/S0734-9750(98)00003-2
  • Behrendt U, Kampfer P, Glaeser SP, Augustin J, Ulrich A (2016) Characterization of the N2O-producing soil bacterium Rhizobium azooxidifex sp. nov. Int J Syst Evol Microbiol 66:2354–2361
  • Bellabarba A, Fagorzi C, diCenzo GC, Pini F, Viti C, Checcucci A (2019) Deciphering the symbiotic plant microbiome: translating the Most recent discoveries on rhizobia for the improvement of agricultural practices in metal-contaminated and high saline lands. Agronomy 9(9):529
  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. Microbiology 84(1):188–198
  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-008-1567-2
  • Bibi F, Chung EJ, Khan A, Jeon CO, Chung YR (2012) Rhizobium halophytocola sp. nov., isolated from the root of a coastal dune plant. Int J Syst Evol Microbiol 62:1997–2003
  • Boonsnongcheep P, Prathanturarug S, Takahashi Y, Matsumoto A (2016) Rhizobium puerariae sp. nov., an endophytic bacterium from the root nodules of the medicinal plant Pueraria candollei var. candollei. Int J Syst Evol Microbiol 66:1236–1241
  • Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403
  • Cardoso P, Alves A, Silveira P, Sá C, Fidalgo C, Freitas R, Figueira E (2018) Bacteria from nodules of wild legume species: phylogenetic diversity, plant growth promotion abilities and osmotolerance. Sci Total Environ 645:1094–1102
  • Celador-Lera L, Menendez E, Peix A, Igual JM, Velazquez E, Rivas R (2017) Rhizobium zeae sp. nov., isolated from maize (Zea mays L.) roots. Int J Syst Evol Microbiol 67:2306–2311
  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. Phaseoli. Plant Soil 184:311–321. https://doi.org/10.1007/BF00010460
  • Checcucci A, Perrin E, Bazzicalupo M, Mengoni A (2019) Genomic diversity and evolution of rhizobia. In: Das S, Dash HR (eds) Microbial diversity in the genomic era. Elsevier, Amsterdam, the Netherlands, pp 37–46
  • Chen W, Sheng XF, He LY, Huang Z (2015) Rhizobium yantingense sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 65:412–417
  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71(11):7271–7278
  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466
  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions and emerging trends in microbial application. J Adv Res 19:20–37
  • Cordeiro AB, Ribeiro RA, Helene LCF, Hungria M (2017) Rhizobium esperanzae sp. nov., a N2-fixing root symbiont of Phaseolus vulgaris from Mexican soils. Int J Syst Evol Microbiol 67:3937–3945
  • Dall’Agnol RF, Ribeiro RA, Ormeno-Orrillo E, Rogel MA, Delamuta JR, Andrade DS, Martinez-Romero E, Hungria M (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173
  • Dall’Agnol RF, Ribeiro RA, Delamuta JR, Ormeno-Orrillo E, Rogel MA, Andrade DS, Martinez-Romero E, Hungria M (2014) Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 64:3222–3229
  • De Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L (2019) Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 69(7):1852–1863
  • diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A (2019) Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 65(1):1–33
  • Essel E, Xie J, Deng C, Peng Z, Wang J, Shen J, Xie J, Coulter JA, Li L (2019) Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation. Soil Tillage Res 19:104302. https://doi.org/10.1016/j.still.2019.104302
  • Etesami H, Alikhani HA, Jadidi M, Aliakbari A (2009) Effect of superior IAA producing rhizobia on N, P, K uptake by wheat grown under greenhouse condition. World Appl Sci J 6(12):1629–1633
  • Flores-Félix JD, Menéndez E, Rivera LP, Marcos-García M, Martínez-Hidalgo P, Mateos PF, Martínez-Molina E, Velázquez E, García-Fraile P, Rivas R (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882. https://doi.org/10.1002/jpln.201300116
  • Flores-Félix JD, Marcos-García M, Silva LR, Menéndez E, Martínez-Molina E, Mateos PF, Velázquez E, García-Fraile P, Andrade P, Rivas R (2015) Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis 67:25–32. https://doi.org/10.1007/s13199-015-0373-8
  • Flores-Felix JD, Ramirez-Bahena MH, Salazar S, Peix A, Velazquez E (2017) Reclassification of Arthrobacter viscosus as Rhizobium viscosum comb. nov. Int J Syst Evol Microbiol 67:1789–1792
  • Flores-Félix JD, Sánchez-Juanes F, García-Fraile P, Valverde A, Mateos PF, Gónzalez-Buitrago JM, Velázquez E, Rivas R (2019) Phaseolus vulgaris is nodulated by the symbiovar viciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Syst Appl Microbiol 42:240–247. https://doi.org/10.1016/j.syapm.2018.10.009
  • Gao JL, Sun P, Wang XM, Lv FY, Mao XJ, Sun JG (2017) Rhizobium wenxiniae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 67:2798–2803
  • García-Fraile P, Rivas RL, Willems A, Peix A, Martens M, Martínez-Molina E, Mateos PF, Velázquez E, Es E (2007) Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijs.0.64680-0
  • García-Fraile P, Carro L, Robledo M, Ramírez-Bahena MH, Flores-Félix JD, Velazquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:e38122. https://doi.org/10.1371/journal.pone.0038122
  • García-Fraile P, Menéndez E, Celador-Lera L, Díez-Méndez A, Jiménez-Gómez A, Marcos-García M, Cruz-González XA, Martínez-Hidalgo P, Mateos PF, Rivas R (2017) Bacterial probiotics: a truly green revolution. In: Probiotics and plant health. Springer, Singapore, pp 131–162. https://doi.org/10.1007/978-981-10-3473-2_6
  • Gasdorf HJ, Benedict RG, Cadmus MG, Anderson RF, Jacksonv RW (1965) Polymer-producing species of Arthrobacter. J Bacteriol 90(1):147–150
  • Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atp D and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048. https://doi.org/10.1099/00207713-51-6-2037
  • González V, Santamaría RI, Bustos P, Pérez-Carrascal OM, Vinuesa P, Juárez S, Romero D (2019) Phylogenomic rhizobium species are structured by a continuum of diversity and genomic clusters. Front Microbiol 10:910
  • Grison CM, Jackson S, Merlot S, Dobson A, Grison C (2015) Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator. Int J Syst Evol Microbiol 65:1525–1530
  • Gu T, Sun LN, Zhang J, Sui XH, Li SP (2014) Rhizobium flavum sp. nov., a triazophos-degrading bacterium isolated from soil under the long-term application of triazophos. Int J Syst Evol Microbiol 64:2017–2022
  • Gutiérrez-Zamora M, Martı́nez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126. https://doi.org/10.1016/S0168-1656(01)00332-7
  • Hafeez FY, Safdar ME, Chaudhry AU, Malik KA (2004) Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Aust J Exp Agric 44:617–622. https://doi.org/10.1071/EA03074
  • Hilali A, Prévost D, Broughton WJ, Antoun H (2001) Effets de l’inoculation avec des souches de Rhizobium leguminosarum biovar trifolii sur la croissance du blé dans deux sols du Maroc. Can J Microbiol 47(6):590–593
  • Huo Y, Tong W, Wang J, Wang F, Bai W, Wang E, Shi P, Chen W, Wei G (2019) Rhizobium chutanense sp. nov., isolated from root nodules of Phaseolus vulgaris in China. Int J Syst Evol Microbiol 69:2049–2056
  • Hussain MB, Zahir ZA, Asghar HN, Asgher M (2014) Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? Int J Agric Biol 16:3–13
  • Irar S, González EM, Arrese-Igor C, Marino D (2014) A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants. Physiol Plant 152:634–645. https://doi.org/10.1111/ppl.12214
  • Jacoby RP, Martyn A, Kopriva S (2018) Exometabolomic profiling of bacterial strains as cultivated using Arabidopsis root extract as the sole carbon source. Mol Plant Microbe Interact 31:803–813. https://doi.org/10.1094/MPMI-10-17-0253-R
  • Jha PN, Gomaa A, Yanni YG et al (2020) Alterations in the Endophyte-enriched root-associated microbiome of rice receiving growth-promoting treatments of urea fertilizer and Rhizobium biofertilizer. Microb Ecol 79:367–382. https://doi.org/10.1007/s00248-019-01406-7
  • Jia HT, Liu JY, Shi YI, Li DL, Wu FZ, Zhou XG (2019) Characterization of cucumber rhizosphere bacterial community with high-throughput amplicon sequencing. Allelopathy J 47(1):103–112
  • Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Wang ET, Guo BL, Chen WX, Chen WF (2015) Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens. Int J Syst Evol Microbiol 65:497–503
  • Jiménez-Gómez A, Flores-Félix JD, García-Fraile P, Mateos PF, Menéndez E, Velázquez E, Rivas R (2018) Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Sci Rep 8:295. https://doi.org/10.1038/s41598-017-18632-z
  • Kaiya S, Rubaba O, Yoshida N, Yamada T, Hiraishi A (2012) Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. J Gen Appl Microbiol 58:211–224
  • Kaur J, Verma M, Lal R (2011) Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Muller 1986 as Rhizobium aggregatum comb. nov. Int J Syst Evol Microbiol 61:1218–1225. https://doi.org/10.1099/ijs.0.017491-0
  • Khalid R, Zhang YJ, Ali S, Sui XH, Zhang XX, Amara U, Chen WX, Hayat R (2015) Rhizobium pakistanensis sp. nov., isolated from groundnut (Arachis hypogaea) nodules grown in rainfed Pothwar, Pakistan. Anton Van Leeuwenhoek 107:281–290
  • Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena MH, Igual JM, Peix A, Rodriguez-Valera F, Velázquez E (2015) Pseudorhizobium pelagicum gen. nov., sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 38(5):293–299
  • Kittiwongwattana C, Thawai C (2013) Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). Int J Syst Evol Microbiol 63:3823–3828
  • Kittiwongwattana C, Thawai C (2014) Rhizobium lemnae sp. nov., a bacterial endophyte of lemna aequinoctialis. Int J Syst Evol Microbiol 64(7):2455–2460. https://doi.org/10.1099/ijs.0.061622-0
  • Kouchi H, Fukai K, Kihara A (1991) Metabolism of glutamate and aspartate in bacteroids isolated from soybean root nodules. J Gen Microbiol 137:2901–2910. https://doi.org/10.1099/00221287-137-12-2901
  • Kuzmanovic N, Smalla K, Gronow S, Pulawska J (2018) Rhizobium tumorigenes sp. nov., a novel plant tumorigenic bacterium isolated from cane gall tumors on thornless blackberry. Sci Rep 8:9051
  • Lagier JC, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, Levasseur A, Rolain JM, Fournier PE, Raoult D (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol 16(9):540–550
  • Larrainzar E, Wienkoop S (2017) A proteomic view on the role of legume symbiotic interactions. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01267
  • Lay CY, Bell TH, Hamel C, Harker KN, Mohr R, Greer CW, Yergeau É, St-Arnaud M (2018) Canola root–associated microbiomes in the Canadian prairies. Front Microbiol 9:1188
  • LeBlanc N, Crouch JA (2019) Prokaryotic taxa play keystone roles in the soil microbiome associated with woody perennial plants in the genus Buxus. Ecol Evol 9:11102–11111. https://doi.org/10.1002/ece3.5614
  • Lin SY, Hsu YH, Liu YC, Hung MH, Hameed A, Lai WA, Yen WS, Young CC (2014) Rhizobium straminoryzae sp. nov., isolated from the surface of rice straw. Int J Syst Evol Microbiol 64:2962–2968
  • Lin SY, Hung MH, Hameed A, Liu YC, Hsu YH, Wen CZ, Arun AB, Busse HJ, Glaeser SP, Kampfer P et al (2015) Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant. Antonie Van Leeuwenhoek 107:773–784
  • Liu TY, Li YJ, Liu XX, Sui XH, Zhang XX, Wang ET, Chen WX, Chen WF, Pulawska J (2012) Rhizobium cauense sp. nov., isolated from root nodules of the herbaceous legume Kummerowia stipulacea grown in campus lawn soil. Syst Appl Microbiol 35:415–420
  • Liu Y, Wang RP, Ren C, Lai QL, Zeng RY (2015) Rhizobium marinum sp. nov., a malachite-green-tolerant bacterium isolated from seawater. Int J Syst Evol Microbiol 65:4449–4454
  • López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327. https://doi.org/10.1016/J.SYAPM.2010.07.005
  • Lopez-Lopez A, Rogel-Hernandez MA, Barois I, Ortiz Ceballos AI, Martinez J, Ormeno-Orrillo E, Martinez-Romero E (2012) Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 62:2264–2271
  • López-Mondéjar R, Kostovˇcík M, Lladó S, Carro L, García-Fraile P (2017) Exploring the plant microbiome through multi-omics approaches. In: Probiotics in agroecosystem. Springer, Singapore, pp 233–268
  • Mahmud K, Makaju S, Ibrahim R, Missaoui A (2020) Current progress in nitrogen fixing plants and microbiome research. Plan Theory 9(1):97
  • Marasco R, Rolli E, Vigani G, Borin S, Sorlini C, Ouzari H, Zocchi G, Daffonchio D (2013) Are drought-resistance promoting bacteria cross-compatible with different plant models? Plant Signal Behavior 8(10):e26741
  • Marks BB, Megías M, Ollero FJ, Nogueira MA, Araujo RS, Hungria M (2015) Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Exp 5(1):71
  • Martínez-Hidalgo P, Hirsch AM (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes 1(2):70–82
  • Martiny AC (2019) High proportions of bacteria are culturable across major biomes. ISME J 4:2125–2128
  • Mathe I, Toth E, Mentes A, Szabo A, Marialigeti K, Schumann P, Felfoldi T (2018) A new Rhizobium species isolated from the water of a crater lake, description of Rhizobium aquaticum sp. nov. Antonie Van Leeuwenhoek 111:2175–2183
  • Menendez E, Garcia-Fraile P (2017) Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol 3(3):502
  • Menéndez E, Paço A (2020) Is the application of plant probiotic bacterial consortia always beneficial for plants? Exploring synergies between rhizobial and non-rhizobial bacteria and their effects on agro-economically valuable crops. Life 10(3):24
  • Menéndez E, Escribano-Viana R, Flores-Félix JD, Mateos PF, Rivas R (2016) Rhizobial biofertilizers for ornamental plants. In: Biological nitrogen fixation and beneficial plant-microbe interaction. Springer, Cham, pp 13–21
  • Mia MAB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production greater production of cereals brings forth higher production cost and pollutes the soil environment due to excessive use of chemical fertilizers. Afr J Biotechnol 9:6001–6009
  • Mnasri B, Liu TY, Saidi S, Chen WF, Chen WX, Zhang XX, Mhamdi R (2014) Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 64:1501–1506
  • Montecillo AD, Raymundo AK, Papa IA, Aquino GMB, Rosana ARR (2018) Complete genome sequence of Rhizobium sp. strain 11515TR, isolated from tomato rhizosphere in the Philippines. Microbiol Resour Announc 7(7):e00903–e00918
  • Montes-Grajales D, Esturau-Escofet N, Esquivel B, Martinez-Romero E (2019) Exo-metabolites of Phaseolus vulgaris-nodulating rhizobial strains. Metabolites 9:105. https://doi.org/10.3390/metabo9060105
  • Morris AC, Djordjevic MA (2001) Proteome analysis of cultivar-specific interactions between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis 22:586–598. https://doi.org/10.1002/1522-2683
  • Mousavi SA, Osterman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindstrom K (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215
  • Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindstrom K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90
  • Muresu R, Porceddu A, Sulas L, Squartini A (2019) Nodule-associated microbiome diversity in wild populations of Sulla coronaria reveals clues on the relative importance of culturable rhizobial symbionts and co-infecting endophytes. Microbiol Res 221:10–14
  • Nag P, Shriti S, Das S (2019) Microbiological strategies for enhancing biological nitrogen fixation in non-legumes. J Appl Microbiol. https://doi.org/10.1111/jam.14557
  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283. https://doi.org/10.1139/m96-040
  • Oberholster T, Vikram S, Cowan D, Valverde A (2018) Key microbial taxa in the rhizosphere of sorghum and sunflower grown in crop rotation. Sci Total Environ 624:530–539. https://doi.org/10.1016/j.scitotenv.2017.12.170
  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Ann Rev Genet 45:119–144
  • Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H, Mora J, Martínez-Romero E (2015) Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38(4):287–291
  • Pandey P, Dubey RS (2019) Metal toxicity in Rice and strategies for improving stress tolerance. In: Advances in rice research for abiotic stress tolerance. Elsevier, New York, pp 313–339. https://doi.org/10.1016/b978-0-12-814332-2.00015-0
  • Parag B, Sasikala C, Ramana CV (2013) Molecular and culture dependent characterization of endolithic bacteria in two beach sand samples and description of Rhizobium endolithicum sp. nov. Antonie Van Leeuwenhoek 104:1235–1244
  • Parte AC (2018) LPSN—list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68:1825–1829. https://doi.org/10.1099/ijsem.0.002786
  • Pérez-Jaramillo JE, de Hollander M, Ramírez CA, Mendes R, Raaijmakers JM, Carrión VJ (2019) Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7(1):1–16
  • Quan ZX, Bae HS, Baek JH, Chen WF, Im WT, Lee ST (2005) Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55(Pt 6):2543–2549
  • Qureshi M, Shahzad H, Saeed M, Ullah S, Ali M, Mujeeb F, Anjum M (2019) Relative potential of rhizobium species to enhance the growth and yield attributes of cotton (Gossypium hirsutum L.). Eur J Soil Sci 8(2):159–166. https://doi.org/10.18393/ejss.544747
  • Ramana CV, Parag B, Girija KR, Ram BR, Ramana VV, Sasikala C (2013) Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 63:581–585
  • Rashid MH, Young JP, Everall I, Clercx P, Willems A, Santhosh Braun M, Wink M (2015) Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. Int J Syst Evol Microbiol 65:3037–3045
  • Ren Da W, Chen WF, Sui XH, Wang ET, Chen WX (2011) Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species. Int J Syst Evol Microbiol 61:580–586
  • Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13(5):278–289
  • Ribeiro RA, Rogel MA, Lopez-Lopez A, Ormeno-Orrillo E, Barcellos FG, Martinez J, Thompson FL, Martinez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62:1179–1184
  • Ribeiro RA, Martins TB, Ormeno-Orrillo E, Marcon Delamuta JR, Rogel MA, Martinez-Romero E, Hungria M (2015) Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 65:3162–3169
  • Rincon-Rosales R, Villalobos-Escobedo JM, Rogel MA, Martinez J, Ormeno-Orrillo E, Martinez-Romero E (2013) Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int J Syst Evol Microbiol 63:3423–3429. https://doi.org/10.1099/ijs.0.048249-0
  • Robledo M, Rivera L, Jiménez-Zurdo JI, Rivas R, Dazzo F, Velázquez E, Martínez-Molina E, Hirsch AM, Mateos PF (2012) Role of rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11(1):125
  • Rodrigues Coelho MR, De Vos M, Carneiro NP, Marriel IE, Paiva E, Seldin L (2008) Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol Lett 279(1):15–22
  • Roesch LFW, Camargo FA, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302(1–2):91–104
  • Rojas-Jiménez K, Sohlenkamp C, Geiger O, Martínez-Romero E, Werner D, Vinuesa P (2005) A CIC chloride channel homolog and ornithine-containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance. Mol. Plant Microbe Interact 18:1175–1185. https://doi.org/10.1094/MPMI-18-1175
  • Romano I, Ventorino V, Pepe O (2020) Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Front Plant Sci 11:6. https://doi.org/10.3389/fpls.2020.00006
  • Roman-Ponce B, Jing Zhang Y, Soledad Vasquez-Murrieta M, Hua Sui X, Feng Chen W, Carlos Alberto Padilla J, Wu Guo X, Lian Gao J, Yan J, Hong Wei G et al (2016) Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol 66:398–406
  • Rozahon M, Ismayil N, Hamood B, Erkin R, Abdurahman M, Mamtimin H, Abdukerim M, Lal R, Rahman E (2014) Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 64:3215–3221
  • Rubio-Canalejas A, Celador-Lera L, Cruz-González X, Menéndez E, Rivas R (2016) Rhizobium as potential biofertilizer of Eruca sativa. In: Biological nitrogen fixation and beneficial plant-microbe interaction. Springer, Cham, pp 213–220
  • Ruíz-Valdiviezo VM, Rogel-Hernandez MA, Guerrero G, Rincón-Molina CI, García-Perez LG, Gutiérrez-Micel FA, Villalobos-Maldonado JJ, López-López A, Martinez-Romero E, Rincón-Rosales R (2017) Complete genome sequence of a novel nonnodulating rhizobium species isolated from Agave americana L. rhizosphere. Genome Announc 5(46):e01280–e01217
  • Saidi S, Ramirez-Bahena MH, Santillana N, Zuniga D, Alvarez-Martinez E, Peix A, Mhamdi R, Velazquez E (2014) Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol 64:242–247
  • Sarhan MS, Hamza MA, Youssef HH, Patz S, Becker M, ElSawey H, Nemr R, Daanaa HS, Mourad EF, Morsi AT, Abdelfadeel MR (2019) Culturomics of the plant prokaryotic microbiome and the dawn of plant-based culture media – a review. J Adv Res 19:15–27
  • Schlindwein G, Vargas LK, Lisboa BB, Azambuja AC, Granada C, Eichelberger G, Naiana C, Prates F, Stumpf R (2008) Influência da inoculação de rizóbios sobre a germinação e o vigor de plântulas de alface. Ciência Rural 38(3):658–664. https://doi.org/10.1590/S0103-84782008000300010
  • Servín-Garcidueñas LE, Guerrero G, Rogel-Hernández MA, Martínez-Romero E (2019) Genome sequence of Rhizobium jaguaris CCGE525T, a strain isolated from Calliandra grandiflora nodules from a rain forest in Mexico. Microbiol Resour Announc 8(9):e01584–e01518
  • Shamseldin A, Carro L, Peix A, Velazquez E, Moawad H, Sadowsky MJ (2016) The symbiovar trifolii of Rhizobium bangladeshense and Rhizobium aegyptiacum sp. nov. nodulate Trifolium alexandrinum in Egypt. Syst Appl Microbiol 39:275–279
  • Sheu SY, Huang HW, Young CC, Chen WM (2015) Rhizobium alvei sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 65:472–478
  • Sheu SY, Chen ZH, Young CC, Chen WM (2016) Rhizobium ipomoeae sp. nov., isolated from a water convolvulus field. Int J Syst Evol Microbiol 66:1633–1640
  • Shi X, Li C, Zhao L, Si M, Zhu L, Xin K, Chen C, Wang Y, Shen X, Zhang L (2016) Rhizobium gei sp. nov., a bacterial endophyte of Geum aleppicum. Int J Syst Evol Microbiol 66:4282–4288
  • Smits TH (2019) The importance of genome sequence quality to microbial comparative genomics. BMC Genomics 20(1):662
  • Steen AD, Crits-Christoph A, Carini P, DeAngelis KM, Fierer N, Lloyd KG, Thrash JC (2019) High proportions of bacteria and archaea across most biomes remain uncultured. ISME J 13:3126–3130
  • Taylor BN, Simms EL, Komatsu KJ (2020) More than a functional group: diversity within the legume–rhizobia mutualism and its relationship with ecosystem function. Diversity 12(2):50
  • Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008) Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes Environ 23(1):89–93
  • Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338(1–2):435–449
  • Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515. https://doi.org/10.1038/nature13959
  • Torres Tejerizo G, Rogel MA, Ormeno-Orrillo E, Althabegoiti MJ, Nilsson JF, Niehaus K, Schluter A, Puhler A, Del Papa MF, Lagares A et al (2016) Rhizobium favelukesii sp. nov., isolated from the root nodules of alfalfa (Medicago sativa L). Int J Syst Evol Microbiol 66:4451–4457
  • Tullio LD, Gomes DF, Silva LP, Hungria M, da Silva Batista JS (2019) Proteomic analysis of Rhizobium freirei PRF 81 T reveals the key role of central metabolic pathways in acid tolerance. Appl Soil Ecol 135:98–103. https://doi.org/10.1016/j.apsoil.2018.11.014
  • Turdahon M, Osman G, Hamdun M, Yusuf K, Abdurehim Z, Abaydulla G, Abdukerim M, Fang C, Rahman E (2013) Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik River. Int J Syst Evol Microbiol 63:2424–2429
  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:1–10. https://doi.org/10.1186/gb-2013-14-6-209
  • Vargas LK, Volpiano CG, Lisboa BB, Giongo A, Beneduzi A, Passaglia LMP (2017) Potential of rhizobia as plant growth-promoting rhizobacteria. In: Microbes for legume improvement. Springer, Cham, pp 153–174
  • Velázquez E, Carro L, Flores-Félix JD, Martínez-Hidalgo P, Menéndez E, Ramírez-Bahena MH, .. Peix A (2017) The legume nodule microbiome: a source of plant growth-promoting bacteria. In Probiotics and plant health, 41-70. Springer, Singapore
  • Velázquez E, Carro L, Flores-Félix JD, Menéndez E, Ramírez-Bahena MH, Peix A (2019) Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition. In: Microbiome in plant health and disease. Springer, Singapore, pp 79–104
  • Vences-Guzmán MÁ, Guan Z, Ormeño-Orrillo E, González-Silva N, López-Lara IM, Martínez-Romero E, Geiger O, Sohlenkamp C (2011) Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899. Mol Microbiol 79:1496–1514. https://doi.org/10.1111/j.1365-2958.2011.07535.x
  • Vergine M, Meyer JB, Cardinale M, Sabella E, Hartmann M, Cherubini P, De Bellis L, Luvisi A (2020) The Xylella fastidiosa-resistant olive cultivar “Leccino” has stable endophytic microbiota during the olive quick decline syndrome (OQDS). Pathogens 9(1):35
  • Vincent JM (1970) The cultivation, isolation and maintenance of rhizobia. In: A manual for the practical study of the root-nodule bacteria. Blackwell, Oxford, pp 1–13
  • Volpiano CG, Lisboa BB, Granada CE, São José JFB, de Oliveira AMR, Beneduzi A et al (2019) Rhizobia for biological control of plant diseases. In: Microbiome in plant health and disease. Springer, Singapore, pp 315–336
  • Walters WA, Jin X, Youngblut N, Wallace JG, Sutter J, Zhang W, González-Peña A, Peiffer J, Koren O, Shi Q, Knight R (2018) Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci 115(28):7368–7373
  • Wang F, Wang ET, Wu LJ, Sui XH, Li YJ, Chen WX (2011) Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol 61:2582–2588
  • Wang J, Andersen SU, Ratet P (2018) Molecular and cellular mechanisms of the legume-rhizobia symbiosis. Front Plant Sci 9:1839
  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphrey-Smith I (1995) Large-scale amino-acid analysis for proteome studies. Electrophoresis 1995:16
  • Wei X, Yan S, Li D, Pang H, Li Y, Zhang J (2015) Rhizobium helianthi sp. nov., isolated from the rhizosphere of sunflower. Int J Syst Evol Microbiol 65:4455–4460
  • Willett W, Rockström J, Loken B, Springmann M et al (2019) Food in the anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393:447–492. https://doi.org/10.1016/S0140-6736(18)31788-4
  • Womack JE (2019) Mapping genes is good for you. Ann Rev Anim Biosci 7:1–16
  • Xu L, Shi JF, Zhao P, Chen WM, Qin W, Tang M, Wei GH (2011) Rhizobium sphaerophysae sp. nov., a novel species isolated from root nodules of Sphaerophysa salsula in China. Antonie Van Leeuwenhoek 99:845–854
  • Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336(1–2):129–142. https://doi.org/10.1007/s11104-010-0454-7
  • Yanni YG, Rizk RY, El-Fattah FKA, Squartini A et al (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28:845. https://doi.org/10.1071/PP01069
  • Yao LJ, Shen YY, Zhan JP, Xu W, Cui GL, Wei GH (2012) Rhizobium taibaishanense sp. nov., isolated from a root nodule of Kummerowia striata. Int J Syst Evol Microbiol 62:335–341
  • Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R, Ragan MA, Schmidt S, Hugenholtz P (2017) Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8(1):1–9
  • Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Promotion of broccoli by plant growth promoting rhizobacteria. Hort Sci 46:932–936
  • Yoneyama T, Terakado-Tonooka J, Minamisawa K (2017) Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: a review and synthesis. Soil Sci Plant Nutr 63(6):578–590
  • Yoneyama T, Terakado-Tonooka J, Bao Z, Minamisawa K (2019) Molecular analyses of the distribution and function of diazotrophic rhizobia and Methanotrophs in the tissues and rhizosphere of non-leguminous plants. Plants 8(10):408. https://doi.org/10.3390/plants8100408
  • Yoon JH, Kang SJ, Yi HS, Oh TK, Ryu CM (2010) Rhizobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 60(6):1387–1393
  • Yuan T, Liu L, Huang S, Taher AH, Tan Z, Wu G, Peng G (2018) Rhizobium wuzhouense sp. nov., isolated from roots of Oryza officinalis. Int J Syst Evol Microbiol 68:2918–2923
  • Zhang RJ, Hou BC, Wang ET, Li Y, Zhang XX, Chen WX (2011) Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int J Syst Evol Microbiol 61(3):512–517
  • Zhang X, Li B, Wang H, Sui X, Ma X, Hong Q, Jiang R (2012) Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 62:1871–1876. https://doi.org/10.1099/ijs.0.026880-0
  • Zhang YJ, Zheng WT, Everall I, Young JP, Zhang XX, Tian CF, Sui XH, Wang ET, Chen WX (2015a) Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol 65:2960–2967
  • Zhang XX, Gao JS, Cao YH, Sheirdil RA, Wang XC, Zhang L (2015b) Rhizobium oryzicola sp. nov., potential plant-growth-promoting endophytic bacteria isolated from rice roots. Int J Syst Evol Microbiol 65:2931–2936
  • Zhang S, Yang S, Chen W, Chen Y, Zhang M, Zhou X, Fan G, Feng FY (2017) Rhizobium arenae sp. nov., isolated from the sand of Desert Mu Us, China. Int J Syst Evol Microbiol 67:2098–2103
  • Zhao YY, Lin RC (2014) UPLC–MSE application in disease biomarker discovery: the discoveries in proteomics to metabolomics. Chem Biol Interact 215:7–16
  • Zhao JJ, Zhang J, Sun L, Zhang RJ, Zhang CW, Yin HQ, Zhang XX (2017) Rhizobium oryziradicis sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 67:963–968
  • Zhang XX, Tang X, Sheirdil RA, Sun L, Ma XT (2014) Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 64:1373–1377
  • Zheng Y, Liang J, Zhao DL, Meng C, Xu ZC, Xie ZH, Zhang CS (2020) The root nodule microbiome of cultivated and wild halophytic legumes showed similar diversity but distinct community structure in Yellow River Delta saline soils. Microorganisms 8(2):207