Ultrasensitive and highly stretchable sensors for human motion monitoring made of graphene reinforced polydimethylsiloxane: Electromechanical and complex impedance sensing performance
- Bosque, Antonio del
- Sánchez-Romate, Xoan F.
- Sánchez, María
- Ureña, Alejandro
ISSN: 0008-6223
Ano de publicación: 2022
Volume: 192
Páxinas: 234-248
Tipo: Artigo
Outras publicacións en: Carbon
Referencias bibliográficas
- M. Amjadi, K.-U. Kyung, I. Park, and M. Sitti, “Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review,” Adv. Funct. Mater., vol. 26, no. 11, pp. 1678–1698, Mar. 2016, doi: 10.1002/ADFM.201504755.
- Mehmood, (2020), J. Environ. Chem. Eng., 8
- Sandler, (2003), Polymer, 44, pp. 5893, 10.1016/S0032-3861(03)00539-1
- Bauhofer, (2009), Compos. Sci. Technol., 69, pp. 1486, 10.1016/j.compscitech.2008.06.018
- Li, (2007), Appl. Phys. Lett., 91, pp. 223114, 10.1063/1.2819690
- Chiacchiarelli, (2013), Compos. Sci. Technol., 80, pp. 73, 10.1016/j.compscitech.2013.03.009
- Fang, (2020), Nanomater. 2020, pp. 1129
- X. Li et al., “Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application,” Adv. Funct. Mater., vol. 26, no. 9, pp. 1322–1329, Mar. 2016, doi: 10.1002/ADFM.201504717.
- Shi, (2016), Adv. Funct. Mater., 26, pp. 7614, 10.1002/adfm.201602619
- Yf, (2018), Nanoscale, 10, pp. 11524, 10.1039/C8NR02652A
- Shin, (2014), Carbon N. Y., 80, pp. 396, 10.1016/j.carbon.2014.08.079
- M, (2015), Nanotechnology, 26
- Zhang, (2018), J. Mater. Chem. C, 6, pp. 5132, 10.1039/C7TC05571D
- Zheng, (2017), Compos. Sci. Technol., 139, pp. 64, 10.1016/j.compscitech.2016.12.014
- Li, (2020), Sensors Actuators, A Phys., 306, pp. 111959, 10.1016/j.sna.2020.111959
- del Bosque, (2021), Chemosensors, 9, pp. 158, 10.3390/chemosensors9070158
- Lu, (2012), Adv. Funct. Mater., 22, pp. 4044, 10.1002/adfm.201200498
- Kong, (2014), Carbon N.Y., Chimia, 77, pp. 199, 10.1016/j.carbon.2014.05.022
- P. Song, G. Wang, and Y. Zhang, “Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors,” Sensors Actuators A Phys., vol. 323, p. 112659, Jun. 2021, doi: 10.1016/J.SNA.2021.112659.
- R. Moriche, M. Sánchez, A. Jiménez-Suárez, S. G. Prolongo, and A. Ureña, “Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix,” Compos. Sci. Technol., vol. 123, pp. 65–70, Feb. 2016, doi: 10.1016/J.COMPSCITECH.2015.12.002.
- Luo, (2013), Adv. Mater., 25, pp. 5650, 10.1002/adma.201301796
- Zhou, (2019), ACS Appl. Mater. Interfaces, 11, pp. 37094, 10.1021/acsami.9b12504
- Shajari, (2020), Adv. Electron. Mater., 6, pp. 1901067, 10.1002/aelm.201901067
- S. Wang, Y. Fang, H. He, L. Zhang, C. Li, and J. Ouyang, “Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring,” Adv. Funct. Mater., vol. 31, no. 5, p. 2007495, Jan. 2021, doi: 10.1002/ADFM.202007495.
- X. Li et al., “A universal method for high-efficiency immobilization of semiconducting carbon nanotubes toward fully printed paper-based electronics,” Adv. Electron. Mater., vol. 7, no. 3, p. 2001025, Mar. 2021, doi: 10.1002/AELM.202001025.
- Z. Lv, X. Huang, D. Fan, P. Zhou, Y. Luo, and X. Zhang, “Scalable manufacturing of conductive rubber nanocomposites with ultralow percolation threshold for strain sensing applications,” Compos. Commun., vol. 25, p. 100685, Jun. 2021, doi: 10.1016/J.COCO.2021.100685.
- Y. Wang et al., “Highly stretchable and reconfigurable ionogels with unprecedented thermoplasticity and ultrafast self-healability enabled by gradient-responsive networks,” Macromolecules, vol. 54, no. 8, pp. 3832–3844, Apr. 2021, doi: 10.1021/ACS.MACROMOL.1C00443.
- Y. Zhan et al., “High sensitivity of multi-sensing materials based on reduced graphene oxide and natural rubber: the synergy between filler segregation and macro-porous morphology,” Compos. Sci. Technol., vol. 205, p. 108689, Mar. 2021, doi: 10.1016/J.COMPSCITECH.2021.108689.
- Sánchez-Romate, (2020), Polym. Test., 90, pp. 106638, 10.1016/j.polymertesting.2020.106638
- Prolongo, (2014), Eur. Polym. J., 61, pp. 206, 10.1016/j.eurpolymj.2014.09.022
- Sánchez-Romate, (2020), Nanomater. 2020, 10, pp. 2431
- Simmons, (2004), J. Appl. Phys., 34, pp. 1793, 10.1063/1.1702682
- Sánchez-Romate, (2020), Smart Mater. Struct., 29, pp. 65012, 10.1088/1361-665X/ab8316
- Sánchez, (2019), Compos. Sci. Technol., 181, pp. 107697, 10.1016/j.compscitech.2019.107697