Glycerolysis of sardine oil catalyzed by a water dependent lipase in different tert-alcohols as reaction medium

  1. Á.G. Solaesa 1
  2. M.T. Sanz 1
  3. R. Melgosa 1
  4. S.L. Bucio 1
  5. S. Beltrán 1
  1. 1 University of Burgos, Spain
Journal:
Grasas y aceites

ISSN: 0017-3495 1988-4214

Year of publication: 2015

Volume: 66

Issue: 4

Type: Article

DOI: 10.3989/GYA.0238151 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Grasas y aceites

Sustainable development goals

Abstract

En este trabajo se ha estudiado la producción de monoacilglicéridos, ricos en ácidos grasos poliinsaturados (AGPI), mediante glicerolisis enzimática de aceite de sardina. La reacción se ha llevado a cabo en dos tert-alcoholes para conseguir de esta forma un medio homogéneo de reacción. La cantidad de disolvente añadida al medio de reacción se ha optimizado y calculado en base al equilibrio de fases de los componentes del sistema. La lipasa empleada como biocatalizador ha sido la enzima inmovilizada Lipozyme RM IM de Rhizomucor miehei, una lipasa dependiente de agua. Se ha estudiado el efecto de distintos parámetros cinéticos, así como de la cantidad de agua añadida al medio de reacción, en la producción de monoacilglicéridos. De los resultados obtenidos, se puede concluir que, para una relación molar inicial de reactantes glicerol:aceite de sardina de 3:1, un 12 % en peso de agua en base al glicerol y un 10 % en peso de lipasa, en base al peso de reactantes; se puede llegar a conseguir un rendimiento en monoacilglicéridos alrededor del 70 % en peso, con casi un 28 % en peso de AGPI y un bajo contenido en ácidos grasos libres (menor del 18 % en peso).

Funding information

Funders

  • Ministerio de Economía y Competitividad
    • BES-2013-063937

Bibliographic References

  • AOAC Official Method 991.39. Fatty Acids in Encapsulated Fish Oils and Fish Oil Methyl and Ethyl Esters. 1995.
  • Blanco M, Sotelo CG, Chapela MJ, Pérez-Martín RI. 2007. Towards sustainable and efficient use of fishery resources: present and future trends. Trends Food Sci. Tech. 18, 29–36. http://dx.doi.org/10.1016/j.tifs.2006.07.015
  • Bornscheuer UT. 1995. Lipase-catalyzed syntheses of monoacylglycerols. Enzyme Microb. Technol. 17, 578–586. http://dx.doi.org/10.1016/0141-0229(94)00096-A
  • Cheirsilp B, Kaewthong W, H-Kittikun A. 2007. Kinetic study of glycerolysis of palm olein for monoacylglycerol production by immobilized lipase. Biochem. Eng. J. 35, 71–80. http://dx.doi.org/10.1016/j.bej.2006.12.024
  • Damstrup ML, Jensen T, Sparsø FV, Kiil SZ, Jensen AD, Xu X. 2005. Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction. J. Am. Oil Chem. Soc. 82, 559–564. http://dx.doi.org/10.1007/s11746-005-1109-y
  • Feltes MMC, de Oliveira D, Block JM, Ninow JL. 2013. The Production, Benefits, and Applications of Monoacylglycerols and Diacylglycerols of Nutritional Interest. Food Bioprocess Tech. 6, 17–35. http://dx.doi.org/10.1007/s11947-012-0836-3
  • Fregolente PBL,Fregolente LV, Pinto GMF, Batistella BC, Wolf-Maciel MR, Filho RM. 2008. Monoglycerides and diglycerides synthesis in a solvent-free system by lipase-catalyzed glycerolysis. Appl. Biochem. Biotechnol. 146, 165–172. http://dx.doi.org/10.1007/s12010-008-8133-3 PMid:18421596
  • Fureby AM, Virto C, Adlercreutz P, Mattiasson B. 1996. Acyl group migrations in 2-monoolein. Biocatal. Biotransform. 14, 89–111. http://dx.doi.org/10.3109/10242429609106879
  • Hernandez EM. 2014. Issues in fortification and analysis of omega-3 fatty acids in foods. Lipid Technol. 26, 103–106. http://dx.doi.org/10.1002/lite.201400004
  • Jin J, Li D, Zhu XM, Adhikari P, Lee K-T, Lee J-H. 2011. Production of diacylglycerols from glycerol monooleate and ethyl oleate through free and immobilized lipase-catalyzed consecutive reactions. New Biotechnol. 28, 190–195. http://dx.doi.org/10.1016/j.nbt.2010.10.005 PMid:20951847
  • Kim SK, Mendis E. 2006. Bioactive compounds from marine processing byproducts - A review. Food Res. Int. 39, 383–393. http://dx.doi.org/10.1016/j.foodres.2005.10.010
  • Kristensen JB, Xu X, Mu H. 2005. Diacylglycerol synthesis by enzymatic glycerolysis: Screening of commercially available lipases. J. Am. Oil Chem. Soc. 82, 329–334. http://dx.doi.org/10.1007/s11746-005-1074-5
  • Krüger RL, Valério A, Balen M, Ninow JL, Oliveira JV, de Oliveira D, Corazza ML. 2010. Improvement of mono and diacylglycerol production via enzymatic glycerolysis in tert-butanol system. Eur. J. Lipid Sci. Technol. 112, 921–927. http://dx.doi.org/10.1002/ejlt.200900253
  • Majid N, Cheirsilp B. 2012. Optimal conditions for the production of monoacylglycerol from crude palm oil by an enzymatic glycerolysis reaction and recovery of carotenoids from the reaction product. Int. J. Food Sci. Technol. 47, 793–800. http://dx.doi.org/10.1111/j.1365-2621.2011.02909.x
  • Nichols PD, McManus A, Krail K, Sinclair AJ, Miller M. 2014. Recent advances in omega-3: Health benefits, Sources, Products and bioavailability. Nutrients. 6, 3727–3733. http://dx.doi.org/10.3390/nu6093727 PMid:25255830 PMCid:PMC4179185
  • Pawongrat R, Xu X, H-Kittikun A. 2008. Physico-enzymatic production of monoacylglycerols enriched with very-long-chain polyunsaturated fatty acids. J. Sci. Food Agric. 88, 256–262. http://dx.doi.org/10.1002/jsfa.3081
  • Rendón X, López-Munguía A, Castillo E. 2001. Solvent engineering applied to lipase-catalyzed glycerolysis of triolein. J. Am. Oil Chem. Soc. 78, 1061–1066. http://dx.doi.org/10.1007/s11746-001-0389-6
  • Riddick JA, Bunger WB, Sakano TK. 1986. Organic Solvents, Physical Properties and Methods of Purification. Wiley. New York.
  • Sidhu KS. 2003. Health benefits and potential risks related to consumption of fish or fish oil. Regul. Toxicol. Pharm. 38, 336–344. http://dx.doi.org/10.1016/j.yrtph.2003.07.002 PMid:14623484
  • Singh AK, Mukhopadhyay M. 2012. Olive oil glycerolysis with the immobilized lipase Candida antarctica in a solvent free system. Grasas Aceites. 63, 202–208. http://dx.doi.org/10.3989/gya.094811
  • Solaesa ÁG, Bucio SL, Sanz MT, Beltrán S, Rebolleda S. 2013. Liquid-liquid equilibria for systems glycerol + sardine oil + tert-alcohols. Fluid Phase Equilib. 356, 284–290. http://dx.doi.org/10.1016/j.fluid.2013.07.026
  • Solaesa ÁG, Bucio SL, Sanz MT, Beltrán S, Rebolleda S. 2014. Characterization of Triacylglycerol Composition of Fish Oils by Using Chromatographic Techniques. J. Oleo Sci. 63, 449–460. http://dx.doi.org/10.5650/jos.ess13202 PMid:24770476
  • Torres C, Lin B, Hill Jr CG. 2002. Lipase-catalyzed glycerolysis of an oil rich in eicosapentaenoic acid residues. Biotechnol. Lett. 24, 667–673. http://dx.doi.org/10.1023/A:1015298728683
  • Voll F, Kru.ger RL, de Castilhos F, Filho LC, Cabral V, Ninow J, Corazza ML. 2011. Kinetic modeling of lipase-catalyzed glycerolysis of olive oil. Biochem. Eng. J. 56, 107–115. http://dx.doi.org/10.1016/j.bej.2010.11.005
  • Weber N, Mukherjee KD. 2004. Solvent-free lipase-catalyzed preparation of diacylglycerols. J. Agric. Food Chem. 52, 5347–5353. http://dx.doi.org/10.1021/jf0400819 PMid:15315368
  • Wongsakul S, Prasertsan P, Bornscheuer UT, H-Kittikun A. 2003. Synthesis of 2-monoglycerides by alcoholysis of palm oil and tuna oil using immobilized lipases. Eur. J. Lipid Sci. Technol. 105, 68–73. http://dx.doi.org/10.1002/ejlt.200390019
  • Xu X. 2000. Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. Eur. J. Lipid Sci. Technol. 102, 287–303. http://dx.doi.org/10.1002/(SICI)1438-9312(200004)102:4<287::AID-EJLT287>3.0.CO;2-Q
  • Xu X. 2003. Engineering of enzymatic reactions and reactors for lipid modification and synthesis. Eur. J. Lipid Sci. Technol. 105, 289–304. http://dx.doi.org/10.1002/ejlt.200390059
  • Yang T, Rebsdorf M, Engelrud U, Xu X. 2005a. Enzymatic production of monoacylglycerols containing polyunsaturated fatty acids through an efficient glycerolysis system. J. Agric. Food Chem. 53, 1475–1481. http://dx.doi.org/10.1021/jf048405g PMid:15740027
  • Yang T, Rebsdorf M, Engelrud U, Xu X. 2005b. Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system. J. Food Lipids. 12, 299–312. http://dx.doi.org/10.1111/j.1745-4522.2005.00025.x
  • Yeoh CM, Choong TSY, Abdullah LC, Yunus R, Siew WL. 2009. Influence of silica gel in production of diacylglycerol via enzymatic glycerolysis of palm olein. Eur. J. Lipid Sci. Technol. 111, 599–606. http://dx.doi.org/10.1002/ejlt.200800265
  • Zhong N, Li L, Xu X, Cheong L, Li B, Hu S, Zhao X. 2009. An Efficient Binary Solvent Mixture for Monoacylglycerol Synthesis by Enzymatic Glycerolysis. J. Am. Oil Chem. Soc. 86, 783–789. http://dx.doi.org/10.1007/s11746-009-1402-7